
 1

THE TREND TOWARDS
BLOCKCHAIN PRIVACY:
ZERO KNOWLEDGE
PROOFS
GEORGE SAMMAN

George is a blockchain and cryptocurrency consultant and advisor to global financial
institutions and startups. He recently co-authored a seminal report on blockchain
architecture with KPMG: http://bit.ly/293Tv9o. George is Entrepreneur in Residence
for Blockchain at Tyro Fintech Hub and Startupbootcamp NYC. He also writes a blog on
blockchain technology and use cases at sammantics.com. George also co-founded BTC.
sx, now magnr, a bitcoin trading platform in 2013. He is also a former Wall Street Senior
Portfolio Manager and Market Strategist as well as a technical analyst. George holds the
Chartered Market Technician (CMT) designation.

http://bit.ly/293Tv9o

2

1 STRIKING A BALANCE: BLOCKCHAIN
TRANSPARENCY VERSUS COMMERCIAL
CONFIDENTIALITY

One of the key trends in the blockchain world, particularly
for financial services and capital markets, is the design
of private blockchain solutions to address the need for
privacy and confidentiality.
This is driving the development of various cryptographic
techniques to encrypt transaction data from everyone
except the parties involved. Many blockchain solutions
are using advanced cryptographic techniques that provide
strong mathematically provable guarantees for the privacy
of data and transactions.
However, when you build for privacy and confidentiality,
there are trade-offs that come with that. Mainly you lose
transparency, which was the major feature of the first
blockchain: Bitcoin.

 1 Striking a balance: Blockchain transparency
versus commercial confidentiality

2 The importance of strong, durable
cryptographic identification

3 What are the options for confidential
transactions on blockchain?

 + Confidential Transactions

 + Zero Knowledge Proofs(ZKPs)

 + zk-SNARKs

 + Zcash

 + Hawk

 + State channels

4 Do you need a blockchain at all? Any why is
consensus needed?

5 Zero Knowledge Proofs - the challenges for
adoption

CONTENTS (a) Starting at the beginning: public blockchain was
designed as a transparency machine

For public blockchain:
 + Computers are distributed and no one entity controls

the network.

 + Anyone can be a validator and anyone can write to or
read from the network.

 + Clients and validators can be anonymous, and all the
data gets stored locally in every node (replication). This
makes all transaction data public.

 + The security of Bitcoin is made possible by a
verification process in which all participants can
individually and autonomously validate transactions.

 + While Bitcoin addresses the privacy problem by issuing
pseudonymous addresses, it is still possible to find out
whose addresses they are, via various techniques.

(b) Moving to private blockchain world
In the private blockchain world, we are seeing the polar
opposite - decentralization and transparency are not
necessary for many of the capital markets use cases.
In private blockchain world, the focus is on how to
preserve privacy and confidentiality, while still achieving
speed, scalability, and network stability.
At a minimum, the nodes must be known in order to satisfy
regulatory and compliance requirements – ensuring that
legal recourse is still available, even between parties who
don't necessarily trust each other.
What is important is privacy and confidentiality, latency
(speed) and scalability (able to maintain high performance
as more nodes are added are added to the blockchain).
Examples of private blockchain solutions that can achieve
privacy and confidentiality include:

 + Encrypted node to node (n2n) transactions: the only
entities to receive data are the two parties involved in
the transaction. In many of these systems, there are
also opt ins for third party nodes (regulators) to be a
part of the transaction.

 + Designated block generator: Systems can use one
designated block “Generator” to collect and validate
all of the proposed transactions, periodically batching
them together into a new-block proposal. Consensus
is provided by the Generator, which applies rules
(validates) agreed to by the nodes (chain cores) to the
block and designated block signors.

In these systems, decentralization is simply not necessary
because all of the nodes are known parties.

 3

Encryption refers to
the operation of disguising
plaintext, information to be

concealed. The set of rules to encrypt
the text is called the encryption algorithm.

The operation of an algorithm depends
on the encryption key, or an input to the
algorithm with the message. For a user to
obtain a message from the output of an
algorithm, there must be a decryption

algorithm which, when used with
a decryption key, reproduces the

plaintext.

2 THE IMPORTANCE OF STRONG, DURABLE
CRYPTOGRAPHIC IDENTIFICATION

(a) (What is Cryptography and Encryption?
With privacy and confidentiality being pivotal, encryption
has become a major focus for all blockchains. Many
of these solutions are using advanced cryptographic
techniques that provide strong mathematically provable
guarantees for the privacy of data and transactions.
In a recent blog post titled "A Gentle Reminder About
Encryption" by Kathleen Breitman of R3CEV, she
succinctly provides a great working definition:

3 CRYPTOGRAPHIC TECHNIQUES
FOR MAINTAINING PRIVACY AND
CONFIDENTIALITY

The key question being asked here is:

A computation performed on the encrypted
data when decrypted is equal to a computation
performed on the encrypted data.

How can you convince a system of a change of state
without revealing too much information? After all,
blockchains want to share a (change of) state; not
information.

If this encryption uses ciphertext to decrypt this plaintext,
you get homomorphic encryption and this (combined
with digital signature techniques) is the basis for the
cryptographic techniques discussed in this article.

 + Homomorphic encryption allows for computations
to be done on encrypted data without first having to
decrypt it.

 + In other words, this technique allows the privacy of the
data/transaction to be preserved while computations
are performed on it, without revealing that data/
transaction. Only those with decrypt keys can access
what exactly that data/transaction was.

Homomorphic encryption means that decrypt(encrypt(A)
+ encrypt(B)) = A+B. This is known as homomorphic
under addition:

On a blockchain, a business process may be at state X
and then move to state Y. This needs to be recorded and
proved, while preserving privacy and not sharing a lot of
information. Furthermore, this change of state needs to
happen legally, otherwise there is a privacy breach.
As a result, we are now seeing the emergence of various
cryptographic techniques, some old and some new, to
encrypt transactions and associated data from everyone
except the parties involved.
Cryptographic techniques such as zero knowledge proofs
(ZKPs) - which use different types of homomorphic
encryption – are able to separate:
1) reaching a conclusion on a state of affairs; and
2) the information needed to reach that state of affairs,
thereby showing that the relevant state is valid.
Outside of blockchain, there are various examples of
homomorphic encryption in practice.

 + CryptDB is an example of system that uses homomorphic
encryption and other attribute preserving encryption
techniques to query databases securely. It is used in
production at Google and Microsoft amongst other places.

 + It does have limitations though: you have to define the
kinds of queries you want ahead of time and it is easy
to leak data. CryptDB provides confidentiality for data
content and for names of columns and tables; however
CryptDB does not hide the overall table structure,
the number of rows, the types of columns, or the
approximate size of data in bytes.

 + One method CryptDB uses to encrypt each data items
is by oncoming. This allows each data item to be placed
in layers of increasingly stronger encryption.

4

Onioning:
allows each
data item to be
placed in layers
of increasingly
stronger
encryption

We focus below on some of the key cryptographic
techniques for blockchain: Zero Knowledge Proofs, zk-
SNARKs, Hawk, confidential signatures, state channels
and homomorphic encryption.
(a) Confidential Transactions
Gregory Maxwell designed a cryptographic tool (CT)
to improve the privacy and security of Bitcoin-style
blockchains. It keeps the amounts transferred visible
only to participants in the transaction. CT's make the
transaction amounts and balances private on a blockchain
through encryption, specifically additively homomorphic
encryption. What users can see is the balances of their
own accounts and transactions that they are receiving.
Zero knowledge proofs are needed to demonstrate to the
blockchain that none of the encrypted outputs contain a
negative value.
The problem with Confidential Transactions is that they only
allow for very limited proofs as mentioned above. zkSNARKs
and Zero Knowledge Proofs (ZKPs) which will be described
in detail below, allow you to prove virtually any kinds of
transaction validation while keeping all inputs private.
(b) Zero Knowledge Proofs (ZKPs)
Zero Knowledge Proofs (ZKPs) are not new. They were
first conceptualized in 1985 in a paper "The Knowledge
Complexity of Interactive proof Systems." A ZKP is a
cryptographic technique which allows two parties (a prover
and a verifier) to prove that a proposition is true, without
revealing any information about that thing apart from it
being true. In the case of cryptocurrencies and blockchains,
this will generally be data about transactional information.

(c) zk-SNARKs
A zk-SNARK (zero-knowledge Succinct Non-Interactive
Arguments of Knowledge) is a Zero Knowledge proof that
is a way to prove some computational fact about data
without revealing the data.
Zk-SNARKs are the underlying cryptographic tool used
in Zcash and Hawk, both of which are building blockchains
with ZKPs (as outlined below).

 + In the case of Zcash, these SNARKs are used for
verifying transactions.

 + In the case of Hawk, these SNARKs are used for
verifying smart contracts. This is done while still
protecting users privacy.

A zk-SNARK is a non-interactive zero-knowledge proof
of knowledge that is succinct and for which proofs are
very short and easy to verify. They can be thought of
as little logic circuits that need to generate a proof of
statement to verify each and every transaction. They do
this by taking a snapshot of each transaction, generate a
proof and then need to convince the receiving side that
the calculation was done correctly without revealing any
data except the proof itself. The basic operation of a
SNARK execution is a coded input into this circuit which
can be decrypted.

DATA#
DATA#

"A zero-knowledge proof must satisfy three properties:

Completeness: if the statement is true, the
honest verifier (that is, one following the
protocol properly) will be convinced of this
fact by an honest prover.

Soundness: if the statement is false, no
cheating prover can convince the honest
verifier that it is true, except with some
small probability.

Zero-knowledge: if the statement is true,
no cheating verifier learns anything other
than this fact. This is formalized by showing
that every cheating verifier has some
simulator that, given only the statement to
be proved (and no access to the prover),
can produce a transcript that "looks like" an
interaction between the honest prover and
the cheating verifier.

The first two of these are properties of more general
interactive proof systems. The third is what makes
the proof zero-knowledge."

 5

Since zk-SNARKs can be verified quickly, and the proofs
are small, they can protect the integrity of the computation
without burdening non-participants. It should be noted
that this technology is just now starting to mature but still
has limitations. They are very CPU intensive to generate
proofs and it takes up to 1 minute to generate new proofs, so
scaling is still an issue that needs to be resolved.
The very first data points for zk-SNARKs will be Zcash,
which is a combo of distributed state and proof that you
own the assets.
(d) Zcash
Zcash is an encrypted open, permissionless, replicated
ledger - a cryptographic protocol for putting private data
on a public blockchain.
Zcash can be thought of as an extension of the bitcoin
protocol. Basically Zcash added some fields to the bitcoin
transaction format to support encrypted transactions.
Zcash uses SNARKs (Zero Knowledge Proofs) to encrypt
all of the data and only gives decryption keys to authorized
parties to see that data.

 + This could not be done on a public blockchain until
now. because if you encrypted everything in the
past it would prevent miners from checking to see if
transactions are valid.

 + ZKPs have made this possible by allowing the creator
of a transaction to make a proof that the transaction
is true without revealing the sender's address, the
receiver's address and the transaction amount.

Zooko describes this as follows:
 + Bitcoin has 3 columns, which are the three

mentioned above (sender address, receiver address,
transaction amount).

 + Zcash has 4 columns – and the 4th column proof
doesn’t know the sender address, the receiver address
or the amount transferred. However, it does know that
nobody could have created the proof that comes with
the encrypted values unless they have a secret key with
sufficient value to cover the amount being transacted.

 + This is a proof that the data inside the encryption correctly
satisfies the validity constructs – it allows the prevention
of double spends and transactions of less than zero.

"Value in Zcash is carried by notes, which specify an
amount and a paying key. The paying key is part of
a payment address, which is a destination to which
notes can be sent. As in Bitcoin, this is associated with
a private key that can be used to spend notes sent to
the address; in Zcash this is called a spending key.
A payment address includes two public keys: a
paying key matching that of notes sent to the
address, and a transmission key for a key-private
asymmetric encryption scheme. “Key-private”
means that ciphertexts do not reveal information
about which key they were encrypted to, except to
a holder of the corresponding private key, which in
this context is called the viewing key. This facility is
used to communicate encrypted output notes on
the block chain to their intended recipient, who can
use the viewing key to scan the block chain for notes
addressed to them and then decrypt those notes.
The basis of the privacy properties of Zcash is that
when a note is spent, the spender only proves that
some commitment for it had been revealed, without
revealing which one. This implies that a spent note
cannot be linked to the transaction in which it was
created."

zCash has
selective transparency,

while bitcoin has
mandatory transparency.

Zcash is mostly the same as bitcoin:
 + The miners and full nodes are transaction validators.

 + Zcash uses Proof of Work (POW) that has miners
checking Zero Knowledge Proofs attached to each
transaction and getting a reward for validating those
transactions.

 + Full nodes are the same, except that if you have the
private keys you can detect if some transactions have
money that is there for you. SNARKs enable miners
to reject a transaction from someone if their private
key doesn’t have enough money for that transaction.

 + By keeping all data private except for the 4th column,
it omits information from leaking onto a private
blockchain - which would allow everyone to view the
transaction information.

 + zCash has selective transparency, while bitcoin has
mandatory transparency. This means that Zcash
can reveal specific things to specific people by
permissioning. It reveals specific transactions that
anyone looking at them can verify in the blockchain.

Some differences that are highlighted in the zCash
whitepaper include:

6

Zcash is what's known as a decentralized anonymous
payment schemes (DAP schemes):

 + A DAP scheme enables users to directly pay each
other privately: the corresponding transaction hides the
payment’s origin, destination, and transferred amount.

 + In Zcash, transactions are less than 1 kB and take under
6 ms to verify — orders of magnitude more efficient
than the less-anonymous Zerocoin and competitive
with Bitcoin.

 + However the privacy achieved is significantly greater
than with Bitcoin. De-anonymizing bitcoin has
become much easier through services that track and
monitor bitcoin movements and the data associated
with it. Mixer services allow for coins to be changed as
they move through the system via a central party but
this still is not sufficient enough.

The zCash whitepaper states:

The major motivations for ZKPs and the Zcash protocol
are 1) privacy and 2) fungibility.

 + Fungibility is being able to substitute individual units
of something like a commodity or money for an equal
amount. This can be a real problem when some units
of value are deemed less because they are considered
"dirty". Hiding the metadata history doesn't allow for a
coin with a bad history to be rejected by a merchant or
exchange. In the words of Gregory Maxwell:

"While on-chain privacy protects contractual parties’
privacy against the public (i.e., parties not involved in the
financial contract), contractual security protects parties
in the same contractual agreement from each other.
Hawk assumes that contractual parties act selfishly to
maximize their own financial interest. In particular, they
can arbitrarily deviate from the prescribed protocol
or even abort prematurely. Therefore, contractual
security is a multi-faceted notion that encompasses
not only cryptographic notions of confidentiality and
authenticity, but also financial fairness in the presence
of cheating and aborting behaviour."

"mixes suffer from three limitations:
(i) the delay to reclaim coins must be large to allow

enough coins to be mixed in;
(ii) the mix can trace coins; and
(iii) the mix may steal coins.
For users with “something to hide,” these risks may
be acceptable. But typical legitimate users (1) wish to
keep their spending habits private from their peers, (2)
are risk-averse and do not wish to expend continual
effort in protecting their privacy, and (3) are often not
sufficiently aware of their compromised privacy."

Zcash is expected to launch soon and, with that, the
genesis block of the Zcash blockchain. Like the bitcoin
blockchain, this will allow anyone in the world to mine
for Zcash. It will be an open, permissionless system (fully
decentralized). Users will be able to send it to anyone
using zero-knowledge privacy.
ZCash’s use of cutting edge cryptographic techniques
comes with substantial risks. A cryptographic attack
that permits the forging of zero knowledge proofs would
allow an attacker to invisibly create unlimited currency
and debase the value of Zcash. Attacks of this kind have
been found and fixed in the recent past. Fortunately, the
metadata hiding techniques used in Zcash tread are more
production-hardened and can be considered less risky.
(e) Hawk
Andrew Miller in his whitepaper: "Hawk: The Blockchain Model
of Cryptography and Privacy-Preserving Smart Contracts" has
developed a programmable smart contract system which
works in much the same way as zCash for smart contracts”

 + Hawk does not store financial transactions on the
blockchain – the code of the contract, as well as data
sent to the contract and money sent and received by
the contract are all kept confidential.

 + It is only the proof that can be seen – while all other
useful information is hidden.

 + Like zCash, transparency is selective in Hawk and
wouldn't need to be used by all smart contracts -
but rather, would be based on use cases and the
preferences of the parties involved.

 + It also aims to tackle the issues of privacy and fungibility
in much the same way as the zCash protocol.

The Hawk whitepaper does a great job of describing the
motivation for the contractual security it seeks to provide
for financial transactions:

Insufficient privacy can also result in a loss of
fungibility--where some coins are treated as
more acceptable than others--which would
further undermine Bitcoin's utility as money.

 7

According to Andrew Miller, Hawk is based on several
cryptographic primitives.

 + It uses the same zero knowledge proof library as zCash,
which is called libsnark.

 + Hawk also uses custom implementations of a lattice-
based hash function, and public key encryption. Hawk
uses a jSnark tool which is open sourced.

In Hawk, each party generates their own secret keys.
Miller stated that

Miller has said there are some differences between
Ethereum contracts and Hawk contracts:

 + Unlike Ethereum, the input language for private
contracts in Hawk is C code.

 + A private Hawk contract is not a long running stateful
process like an Ethereum contract, but rather a 1-shot
contract that proceeds in phases, where it first receives
the inputs from each party, and then computes the
outputs for each party.

 + After the outputs are computed, the contract is
finished and no longer holds any balance.

So, it is a slightly different computing model. Hawk
supports both private contracts (as described above) as
well as public contracts. which are exactly like those in
Ethereum. (No privacy guarantees are provided for the
public contracts, though).
As in Zcash, there are some challenges to blockchain
scaling and optimizing cryptographic schemes so that they
are efficient when using ZKPs:

 + Hawk tries to do as much computation “off chain” as possible.

 + This is done because in public blockchains, “on chain”
computing is replicated to every node and slows things
down dramatically. Producing the proof can take up to
several minutes (which is long) and can be costly.

 + By comparison, nodes checking the proof only take
milliseconds to do that.

 + The Hawk whitepaper outlines that in Hawk,
computation takes about a minute of CPU time
for each participant in a Hawk contract. On chain
computation takes about 9 to 20 milliseconds.

Hawk has not announced a release date yet as they are
still working on optimizing their snark compiling tools to
enhance performance.
(f) State Channels
State channels aim to address the scalability issues, privacy
issues and confirmation delays associated with public
blockchains, while still allowing actors who don't necessarily
trust each other to transact.

 + State channels allow for payment channels that are “off
chain” and allow for updates to any type of applications
that have a change of state.

 + Like the Lightning Network, two or more users can
exchange payments that would normally require a
blockchain transaction, without needing to publish
them on the blockchain or wait for confirmations
except when setting up or closing out the channel.

"For each contract, there is also a trusted
public parameter, similar to Zcash. The
only way to generate these parameters is
a process that involves generating a secret
value in an intermediate step, which needs
to be erased at the end of the protocol. To
borrow Zcash's term for this, it's like a "toxic
waste byproduct" of the setup procedure,
and like all industrial waste, it must be
securely disposed of. There are many
options... we could do what Zcash does and
use a multi-party computation to generate
these parameters, simply let a trusted party
do it (the trusted party only needs to be
used once and can go offline afterwards),
or use trusted hardware like SGX."

8

 "State channels are a strategy that aims to solve the
scalability challenge by keeping the underlying blockchain
protocol the same, instead changing how the protocol is used:
rather than using the blockchain as the primary processing
layer for every kind of transaction, the blockchain is instead
used purely as a settlement layer, processing only the final
transaction of a series of interactions, and executing complex
computations only in the event of a dispute.
State channels are not a perfect solution; particularly, it is less
clear how they extend to massively-multi-user applications,
and they offer no scalability improvements over the original
blockchain in terms of its ability to store a large state size -
they only increase de-facto transaction throughput. However,
they have a number of benefits, perhaps the most important
of which is that on top of being a scalability solution they
are also a privacy solution, as the blockchain does not see
any of the intermediate payments or contracts except for
the final settlement and any disputes, and a latency solution,
as state channel updates between two parties are instant -
much faster than any direct on-blockchain solution, private
or public, possibly could be, and potentially even faster than
centralized approaches as channel updates from A to B can
be secure without going through a centralized server."

Vitalik Buterin explains this in his paper for R3CEV "Ethereum Platform Review"

 8

 9

 + If the proof is only between the two parties involved in
the transaction, why is consensus needed? And why
use a public blockchain?

 + It may seem counterintuitive, but the answer is yes: a
public blockchain is needed, and so is consensus, and
this is due to the privacy of the proofs. Essentially,
complete transparency is needed to maintain the
privacy of the proofs.

Zero Knowledge Proofs and blockchains complement each
other. You can't just use one to replace the other.

 + A blockchain is used to enable the entire network to agree
on some state which may or may not be encrypted.

 + Zero Knowledge Proofs allow you to be confident about
some properties of that state.

In this scenario, you still need a canonical source of truth:
a view key that reveals all incoming transactions, but not
outgoing ones. And for this to happen, you need a fully
decentralized ledger with consensus - where everyone
agrees with the data written there.

 + For example, zcash has data which contains
information which is useless and unreadable to most
actors. It’s a database of commitments and opaque
pieces of data. It's just a way to synchronize data
between actors. (Zooko Wilcox has publicly stated
that if Chainalysis graphed this out it would just be a
series of timestamps of when a transaction occurred.)
In cases where the number of transactions are low,
then timing attacks could reveal the originator of
transactions, imagine this to be equivalent of just one
node connected to a Tor network.

The real emphasis is on the wallet side for actors, because
this allows them to spend money and move assets around.

 + In bitcoin you can take a private key and move bitcoin.

 + Now it's more. It’s a private key and a set of secrets
you keep to prove previous proof and generate a new
proof that you use to convince others. For this, a fully
decentralized ledger is needed with consensus, where
everyone agrees with the data written there.

A blockchain is necessary because you need consensus
layer from everyone:

 + It is necessary to have an agreement of proofs in the
ledger to move assets around later on.

 + If that proof isn’t available in every node, then you can’t
convince anyone of the proof when you need to move
assets later on.

These proofs need to be stored in an open way, so that
the proofs can be seen as being verified and accepted by
receiving parties.
There are two different layers here:

(i) needs to be agreement on what proofs
everyone accepts

Is consensus even needed,
if everything is private but for the proof???

(ii) needs to be agreement on what you can prove;
what happens on proof of zero knowledge; and
what happens once you know the information.

How do you generate proof and pass that information to
the next person?

 + The key is to get authority of the transaction by
adding a proof or metadata to the transaction with
some type of conditional script (“if then” statements
for transaction acceptance). This code contains
transaction validity rules. A person sees proof from
outside but they don’t know if the rule itself has been
triggered or not.

 + Now that you have privacy from Zero Knowledge
Proofs, then in order to comply with the transaction,
you need to prove that the transaction abides by the
rules. So you can take 2 proofs and create new proofs
that the person receiving them can point at and verify
that the proof is accepted by the entire network. Once
the proofs have a meaning to you based on the rules,
you can agree they were proved in the past and can be
used in the future to transact and transfer money.

4 DO YOU NEED A BLOCKCHAIN AT ALL?
AND WHY IS CONSENSUS NEEDED?

For many people, all of these cryptographic methods (which
mask all of the transactional data) will come as a surprise.

 + The blockchain is supposed to be a transparency
machine in which anyone can join the network and, as a
result, view all information on that network.

 + Even in private blockchains, there is a more open
view into the data than the protocols that have been
mentioned in this article.

10

5 ZERO KNOWLEDGE PROOFS - THE
CHALLENGES FOR ADOPTION

Zero Knowledge Proofs are only just commencing real
world tests, and they still suffer from big scalability issues.
The work of developing a proof is enormous and has
massive computation costs:

 + Taking the example of Zcash, it takes between 45
seconds and 1 minute on a really strong computer to
create a proof and transfer funds.

 + Presently, people are working on making SNARKs and
Zero Knowledge Proofs more efficient by allowing for
more proofs per second, or for more elaborate proofs
in the same amount of time.

Deep architectual changes need to be made in blockchain
technologies to leverage the benefits of Zero Knowledge
Proof architecture. It requires an understanding as to the
constraints of what we can prove, and at what scale.
Zero Knowledge Proofs are moving out of the realm of
theory and becoming production strength. Now is the
time to see how successful they are in delivering the
demands for confidentiality and privacy in the private
blockchain world.
Very Special Thanks to Zaki Manian (@zmanian),
Andrew Miller (@socrates1024) Jonathan Rouach (@jonrouach),
Anish Mohammed (@anishmohammed)

Hawk section provided by Andrew Miller from a series of questions I asked.

